LANSEN

Wireless M-BUS B4 Gateway documentation LTE-M1 / GPRS and Ethernet GW

using optional
LansenConfigurator 1.6.2.0

Introduction	4
MQTT traffic	4
Packet sent by gateway with wM-Bus container	5
Sending configuration packets to a gateway	7
Alternative 1: M-BUS header for encrypted and non-encrypted configuration packets	7
Alternative 2: M-BUS header only for non-encrypted configuration data.	8
The response from the gateway	9
Status packet	10
Ready-for-conf packet	15
Indications of a gateway	16
Visual and sound indications during startup sequence of a gateway	16
Visual indications in active mode (startup sequence completed)	16
Connection sequence to MQTT for uploading data (Battery Gateway)	17
Connection sequence to MQTT for uploading data (Mains Gateway)	17
Notes regarding SIM-card and PIN	18
Notes regarding gateway antennas	18
Power consumption	18
Battery lifetime (Battery Gateway)	19
Using program Lansen Configurator for configuration of the gateway	21
Connect to the gateway over wM-Bus interface using a Lansen USB-dongle	21
Connect to the gateway over MQTT interface using Lansen Configurator	23
Configuration settings for a gateway	25
Settings in the gateway	26
Basic-tab	26
AES key	26
MBUS mode	27
Min install RSSI	27
Antenna gain	27
Timers-tab	28
Suppression timer	28
Start time	28
Listen/pause timers	28
Magnet reed timer	29
Route messages	29
Meters-tab	30
Automatic meter installation	30
Number of meters	30
Add meter(s) manually to internal routing list	30

Add meter(s) from file to internal routing list	31
Delete meter(s)	31
Clock-tab	32
Bridge-tab	32
LTE gateway specific settings	
NTP	
Ethernet gateway specific settings	
Extra screenshots from the Meters tab with details	
Connecting and working with Lansen Configurator (Battery Gateway)	38
Upgrade firmware	41
LTE gateway	
Ethernet Gateway	

Introduction

- This device from Lansen is a lightweight gateway that is made for receiving wM-Bus data and transmitting the data using LTE M1/GPRS or Ethernet, depending on variant, to an MQTT server.
- The data received is timestamped and once connection to the MQTT service is active the data is transmitted to the specified MQTT server.
- To maintain full data integrity, the data is NOT decrypted in the gateway and no encryption keys are stored in the gateway.
- Packets are sent with Quality of Service (QoS) set to 0, i.e., the MQTT server should not reply to messages. TCP/IP is handling transmission, ACK, and quality of service automatically.
- The gateway can be configured over the wM-Bus interface using, for example, a Lansen USB-dongle (LAN-WMBUS-D1/D2-TC), a wM-Bus compatible transceiver, or via the MQTT interface.
- The gateway can run either on mains power or battery.
- The gateway support in-field upgrade of the firmware. The upgrade can be requested by the MQTT or wM-Bus interface.
- Configuration of a gateway can be protected using a unique AES128 encryption key which is preprogrammed into the gateway during production.

MQTT traffic

This document describes how to interpret data packages from a gateway which support Message Queueing Telemetry Transport (MQTT).

Note: The number 01234567 below is an example of a serial number for a gateway.

Data is posted from the gateway on topic LAS/W/D/01234567.

Configuration to the gateway is posted on topic LAS/W/C/01234567.

Response of configuration from the gateway is posted on topic LAS/W/R/01234567.

Gateway ready to accept configuration data is posted on topic LAS/W/I/01234567.

Packets are sent with Quality of Service (QoS) set to 0, i.e., the MQTT server should not reply to messages. TCP/IP is handling transmission, ACK, and QoS, automatically.

If the connection is lost, data is stored on the gateway in its flash memory. This is also the case for battery driven devices.

If the connection is lost during a transmission the gateway will resend the not yet delivered telegram to the server once the connection is active again.

Below is an example packet as sent from the gateway where wM-Bus data is in blue, the MQTT header is in red, and the received WMBUS packet is in yellow.

30 A0 01 00 10 4C 41 53 2F 57 2F 44 2F 30 30 30 34 36 31 35 33 68 88 88 68 08 FD 72 97 42 04 00 33 30 0B 32 58 00 00 00 0C 78 53 61 04 00 06 6D 58 84 95 DE 26 5B 01 FD 71 A3 8C 40 78 97 42 04 00 81 40 FD F1 94 74 00 0D FD 3B 55 54 44 33 30 97 42 04 00 0B 32 7A C4 00 00 40 2F 2F 04 FD 3A D3 C4 00 00 82 40 FD 3A 1E 01 02 FD 0F 95 00 81 80 40 FD 3A 00 84 C0 40 FD 3A A6 99 00 00 42 FD 3A 19 00 82 01 FD 3A 87 05 C1 01 FD 3A 7F 82 02 FD 3A E0 01 06 6D 1A 04 95 DE 26 00 02 FD 46 0B 0D B2 16

Packet sent by gateway with wM-Bus container

The data is packed into a wM-Bus container data record which is represented by the table below.

Example packet complete MQTT packet:

Information	n							
DR1	Represents the	time when package was received						
DR2	Represents the signal strength for the reception of the received package							
DR3	If packet was from a repeater the repeater serial number is written here, otherwise this value is 0xFFFFFFF							
DR4	RSSI value that the repeater received the packet. Relative RSSI 0-100, 0 is the best and 100 is the worst. 0xFF means the value is not used.							
DR5	Wireless M-Bu	is data received.						
Byte No.	Field Name	Content	Info	Byte data (example)	Layer			
1	Start	Start-byte		0x68				
2	L-Field	Telegram length	If packet is longer than 255 then both	0x45	ink			
3	L-field	Telegram length	L-fields should be added, otherwise the L-fields are the same.	0x45	Data Link			
4	Start	Start-byte		0x68	Da			
5	C-Field	ACC-DMD		0x08				
6	A-Field	Primary addressing	0xFD = Use secondary addressing	0xFD				
7	CI-Field	Long header (0x72)		0x72				
8	ID-Field	Identification number (LSB)		0x00				
9	ID-Field	Identification number		0x11				
10	ID-Field	Identification number	Example: 33221100	0x22				
11	ID-Field	Identification number (MSB)		0x33	+:			
12	Manufacturer	Manufacturer code (LSB)		0x33	Transport			
13	Manufacturer	Manufacturer code (MSB)	LAS	0x30	Jst			
14	Version	Version Version		0x07	rai			
15	Type	Device type		0x07	Ē			
16	Acc.	Access number		0x1D				
17	Status	Errors and alerts		0x00				
18	Config.	Configuration field		0x00				
19	Config.	Configuration field	Example: Encryption off	0x00				
20	ID-Field	DIF	8-digit BCD	0x0C				
21	ID-Field ID-Field	VIF	Fabrication number	0x0C 0x78				
22	ID-Field ID-Field	Gateway serial number (LSB)	1 adrication number	0x78				
23	ID-Field ID-Field	Gateway serial number (LSB) Gateway serial number		0x08				
23	ID-Field ID-Field	Gateway serial number Gateway serial number	Example: 00000008	0x00 0x00				
25		•		0x00 0x00				
26	ID-Field DR1	Gateway serial number (MSB) DIF	48 hit integer	0x00 0x06				
27			48-bit integer		Application			
28	DR1 DR1	VIF Received time (LSP)	Time Type I format	0x6D 0x02				
28		Received time (LSB)						
	DR1	Received time		0x01				
30	DR1	Received time	Example: 2000-01-01 00:01:02	0xC0				
31	DR1	Received time		0x01				
32	DR1	Received time		0x01				
33	DR1	Received time (MSB)		0x00				
34	DR2	DIF	8-bit integer	0x01				
35	DR2	VIF	Extension	0xFD				
36	DR2	VIF	RSSI	0x71				

37	DR2	Value	Example: 118	0x76	
38	DR3	DIF	8 digit BCD	0x8C	
39	DR3	DIFE	Subunit 1	0x40	
40	DR3	VIF	Fabrication number	0x78	
41	DR3	Repeater serial number (LSB)		0x09	
42	DR3	Repeater serial number	Example: 00000009	0x00	
43	DR3	Repeater serial number	Example: 00000009	0x00	
44	DR3	Repeater serial number (MSB)		0x00	
45	DR4	DIF	8-bit integer	0x81	
46	DR4	DIFE	Subunit 1	0x40	
47	DR4	VIF	Extension	0xFD	
48	DR4	VIFE	RSSI	0xF1	
49	DR4	VIFE	Relative deviation	0x94	ior
50	DR4	VIFE	Multiplier (0.01)	0x74	ati
51	DR4	Value	RSSI of repeater (0-100%) Note: 0xFF = Not used Example: 70	0x46	Application
52	DR5	DIF	Variable length	0x0D	
53	DR5	VIF	Extension	0xFD	
54	DR5	VIFE	Data container for wireless M-Bus protocol	0x3B	
55	DR5	LVAR	Example: 50	0x32	
56	DR5	Telegram content starting with the L-field in the contained wireless MBUS packet		0x8C	
57					
58	DR5	Last byte of the telegram	0x06		
59	Checksum			0x	Data Link
60	Stop-byte			0x16	

Sending configuration packets to a gateway

This chapter describes how to send configuration packets to a gateway. The packet is always sent to the topic LAS/W/C/12345678 where 12345678 is the serial number of the gateway.

Note: Alternative 1 needs to be used if a gateway has been enabled to only accept encrypted configuration packets.

Alternative 1: M-BUS header for encrypted and non-encrypted configuration packets

The following header is supported by the gateway and can be used for sending both AES128 encrypted and non-encrypted configuration packets.

The serial number in bytes 12-15 must be the serial number of the gateway that should be configured, i.e., the same serial number that is in the MQTT configuration header.

The access number, byte 20, should be incremented by 1 for each packet sent to the gateway for optimal security. However, it will still work even if the same access number is always used.

Note: After the header, the configuration data is added – The configuration data is also referred to as ENAPI Data. Refer to the document **Bridge_ENAPI_Commands_B4** for detailed instruction about each ENAPI command. Configuration of the gateway is sent in the same way both on the MQTT as with the dongle. An NDA is required to receive the commands and the structure.

Byte No.	Field Name	Content	Info	Byte data (example)	Layer
1	L-Field	Length of data			
2	C-Field	SND-UD2		0x43	
3	M-Field	Meter Manufacturer Code	LAS	0x33	Ų.
4	M-Field	Meter Manufacturer Code	LAS	0x68	in.
5	A-Field	Serial number BCD (LSB)		0x0A	Data Link
6	A-Field	Serial number BCD	Example: 0A0A0A0A	0x0A	ata
7	A-Field	Serial number BCD	Example: UAUAUAUA	0x0A	De
8	A-Field	Serial number BCD (MSB)		0x0A	
9	A-Field	Version	Example: 00	0x00	
10	A-Field	Device type	Example: 00	0x00	
11	CI-Field	Long network header		0x5B	
12	Ident Nr.	Gateway serial number BCD (LSB)		0x78	
13	Ident Nr.	Gateway serial number BCD	Example: 12345678	0x56	
14	Ident Nr.	Gateway serial number BCD	Example. 12343078	0x34	
15	Ident Nr.	Gateway serial number BCD (MSB)		0x12	
16	Manufacturer	Manufacturer code (LSB)	- LAS	0x33	t
17	Manufacturer	Manufacturer code (MSB)	LAS	0x30	or
18	Version	Version (Ignored by gateway)	This can be set to any value	0xFF	dsı
19	Device type	Device type (Ignored by gateway)	This can be set to any value	0xFF	Fransport
20	Access number.	Access Number to gateway		0x75	Ŧ
21	Status	Errors and alerts		0x00	
22	Config.	Configuration field	Example: Encryption off	0x00	
23	Config.	Configuration field	Example: Encryption on	0x00	
24	AES-verify	Encryption verification		0x2F	
25	AES-verify	Encryption verification		0x2F	

Alternative 2: M-BUS header only for non-encrypted configuration data.

This format is easier, compared to the previous alternative, but only supports non-encrypted configuration data. The Access number, byte 12, should be incremented by 1 for each packet sent to the gateway for best security. However, it will still work even if the same access number is always used.

Note: After the header, the configuration data is added – The configuration data is also referred to as ENAPI Data. Refer to the document **Bridge_ENAPI_Commands_B4** for detailed instruction about each ENAPI command. Configuration of the gateway is sent in the same way both on the MQTT as with the dongle. An NDA is required to receive the commands and the structure.

Byte No	Field Name	Content		Info	Byte data (example)	Layer
1	L-Field	Length of data				
2	C-Field	SND-NR			0x44	
3	M-Field	Meter Manufacturer Co	de	TAC	0x33	~
4	M-Field	Meter Manufacturer Co	de	LAS	0x30	Link
5	A-Field	Serial number BCD (LS	B)		0x0A	a I
6	A-Field	Serial number BCD		Example:	0x0A	Data
7	A-Field	Serial number BCD		0A0A0A0A	0x0A	Д
8	A-Field	Serial number BCD (MS	SB)		0x0A	
9	A-Field	Version			0x00	
10	A-Field	Device type			0x00	
11	CI-Field	Short network header			0x7A	
12	Access no.	Access Number		0xA	.1	4
13	Status	Errors and alerts			0x00	or
14	Configuration			Example: Encryption	0x00	dsu
15	Configuration			off	0x00	Transport
16	AES-verify	Encryption verification			0x2F	E
17	AES-verify	Encryption verification			0x2F	

The response from the gateway

The packet is always sent to the topic LAS/W/R/12345678 where 12345678 is the serial number of the gateway.

Note: After the header, the configuration data is added – The configuration data is also referred to as ENAPI Data. Refer to the document **Bridge_ENAPI_Commands_B4** for detailed instruction about each ENAPI command.

Byte No	Field Name	Content		Byte data	
1	L-Field	Length of data		0x	
2	C-Field	RSP-UD		0x08	
3	M-Field	Meter Manufacturer code (LAS)		0x33	V
4	M-Field	Meter Manufacturer code (LAS)		0x30	lii.
5	A-Field	Serial NO LSB (BCD)		0x78	Ä
6	A-Field	Serial NO (BCD)		0x56	Data Link
7	A-Field	Serial NO (BCD)		0x34	Õ
8	A-Field	Serial NO MSB (BCD) of GW		0x12	
9	A-Field	Version		0x0A	
10	A-Field	Device type		0x31	
11	CI-Field	Short transport header		0x7A	
12	Access No.	Access number of gateway		0x75	ţ
13	Status	Meter state (Low battery)	Example: Low battery	0x04	oľ
14	Config Field			0x00	dsı
15	Config Field			0x00	Transport
16	AES-Verify	Encryption verification		0x2F	Ξ
17	AES-Verify	Encryption verification		0x2F	

Status packet

Version

Version

A status packet contains information and settings about the gateway and the packet is sent at regular intervals.

In other words, a status packet is sent:

- Every 12 hours over the MQTT interface.
- On every new connection to the MQTT server.
- Every minute over the wM-Bus interface (default in C mode, frame format A).

Note: Info	rmation in DR1	– DR11 below are the same as	for the repeater.							
DR1		per of packets transmitted over M	1							
DR2		ng slots (maximum 2000) used (- * *							
DR3		ersion of gateway	,							
DR4		ge listening now? (1=Yes, 0=NO)							
DR5			Sleep→Listen). Maximum 32767 secor	nds						
DR6		arameter "Listen timer"	,							
DR7	-	llue on parameter "Pause timer" (0=The gateway will always listen)								
DR8		hows which weekday(s) the gateway is listening. See Table 1 for more information								
DR9			minutes after midnight (-1=Not used)							
DR10	Current tim		2 \							
DR11	Current bat	ttery level. Battery level is alway	vs 3600 for battery version and 5000 for	mains version	1					
DR12	IMEI numb	<u> </u>								
DR13	ICCID nun	nber of SIM-card number								
DR14	RSSI in the	e LTE M1 network (connection b	between the gateway and the base station	n)						
DR15	Hardware i	model								
DR16	Hardware v	version								
DR17	On time (da	ays) since powerup								
DR18	Number of	seconds for which the modem h	as been active							
DR19	Number of	seconds for which the wM-Bus	radio has been in listen mode							
DD20	Shows whi	Shows which weekday(s) the gateway will upload data. See Table 1 for more information								
DR20	Note: Has	no function if parameter MQTT.	Always Online is enabled.							
DR21	The time for	or which the modem will upload	stored data, shown as minutes after mid	night (-1=Not	used)					
DKZI		no function if parameter MQTT.	•							
DR22		<u> -</u>	oad data. Maximum 1440 minutes (24 ho	ours).						
DD22		nbined with days to upload data								
DR23	Number of	N I P server connection retries s	ince last successful NTP connection.							
D . M	TI 11N		T. C.	Byte data	•					
Byte No.	Field Name	Content	Info	(example)	Layer					
1	Start	Start-byte		0x68						
2	L-Field	Telegram length	If packet is longer than 255 then	0x45	nk					
3	L-field	Telegram length	both L-fields should be added, otherwise the L-fields are the same.	0x45	Data Link					
4	Start	Start-byte		0x68	ate					
5	C-Field	SND NR		0x44	Ω					
6	A-Field	Primary addressing	0xFD = Use secondary addressing	0xFD						
7	CI-Field	Long header (0x72)		0x72						
8	ID-Field	Identification number (LSB)		0x00						
9	ID-Field	Identification number	F 1 22221100	0x11	Ħ					
10	ID-Field	Identification number	Example: 33221100	0x22	Transport					
11	ID-Field	Identification number (MSB)		0x33	ns					
12	Manufacturer	<u> </u>	LAC	0x33]ra					
13	Manufacturer		LAS	0x30						
1.4	Vorgion	Varsion		0v07						

0x07

15	Туре	Device type		0x1B		
16	Acc.	Access number		0x1B 0x01	-	
17	Status	Errors and alerts	Example : Low battery	0x01 0x04	-	
18	Config.	Configuration field	Example. Low battery	0x04 0x00	-	
19		Configuration field	Example: Encryption off	0x00	-	
20	Config. ID-Field	DIF	9 digit DCD	0x0C		
21	ID-Field ID-Field	VIF	8-digit BCD Fabrication number	0x0C 0x78	-	
22	ID-Field ID-Field		Fabrication number		-	
		Gateway serial number (LSB)	-	0x08	-	
23	ID-Field ID-Field	Gateway serial number Gateway serial number	Example: 00000008	0x00 0x00	-	
			-		-	
25	ID-Field	Gateway serial number (MSB)	22 hit into	0x00		1
26	DR1	DIF	32-bit integer	0x04	Number of total	
27 28	DR1	VIF VIFE	Extension table	0xFD	packets	
	DR1		Dimensionless	0x3A	transmitted over	
29	DR1	Value (LSB)		0x01	MQTT since	
31	DR1	Value	Example: 65793 (0x010101)	0x01	power up	
32	DR1	Value	0x01	-		
33	DR1	Value (MSB)	16121	0x00		
34	DR2	DIF	16-bit integer + Extension	0x82	-	
35	DR2	DIFE	Subunit 1	0x40	Used routing	
36	DR2	VIF	Extension table	0xFD	slots	
37	DR2	VIFE	Dimensionless	0x3A		
38	DR2	Value (LSB)	Example: 521 (0x0209)	0x09		
39	DR2	Value (MSB)		0x02		
40	DR3	DIF	16-bit integer	0x02	_	on
41	DR3	VIF	Extension table	0xFD	Software version	ati
42	DR3	VIFE	Version	0x0F	of gateway	lic
43	DR3	Value (LSB)	Example: 120 (0x0078)	0x78	-	Application
44	DR3	Value (MSB)		0x00		A _J
45	DR4	DIF	8-bit integer + Extension	0x81	-	
46	DR4	DIFE	Subunit 2	0x80	Is the bridge	
47	DR4	DIFE	Subunit 2	0x40	listening now?	
48	DR4	VIF	Extension table	0xFD	(1=Yes, 0=NO)	
49	DR4	VIFE	Dimensionless Part (0, 01)	0x3A	_	
50	DR4	Value	Example: Yes (0x01)	0x01		
51	DR5	DIF	32-bit integer + Extension	0x84		
52	DR5	DIFE	Subunit 3	0xC0	-	
53	DR5	DIFE	Subunit 3	0x40		
54	DR5	VIF	Extension table	0xFD	Seconds to mode	
55	DR5	VIFE	Dimensionless	0x3A	change	
56	DR5	Value (LSB)		0xAB	-	
57	DR5	Value	Example: 5803 (0x000016AB)	0x16		
58	DR5	Value		0x00		
59	DR5	Value (MSB)	4411	0x00		
60	DR6	DIF	16-bit integer + Storage 1	0x42	-	
61	DR6	VIF	Extension table	0xFD	Value on	
62	DR6	VIFE	Dimensionless	0x3A	parameter	
63	DR6	Value (LSB)	Example: 20 (0x0014)	0x14	"Listen timer"	
64	DR6	Value (MSB)	20 (010011)	0x00		

(5	DD7	DIF	16 hit interes Festivalian	002		
65	DR7		16-bit integer + Extension	0x82	-	
66	DR7	DIFE	Storage 2	0x01	Value on	
67	DR7	VIF	Extension table	0xFD	parameter	
68	DR7	VIFE	Dimensionless	0x3A	"Pause timer"	
69	DR7	Value (LSB)	Example: 1420 (0x058C)	0x8C	_	
70	DR7 DR8	Value (MSB) DIF	9 hit integer Storege Eytension	0x05 0xC1		
72	DR8	DIFE	8-bit integer + Storage + Extension		-	
			Storage 3	0x01		
73	DR8	VIF	Extension table	0xFD	Which weekdays	
74	DR8	VIFE	Dimensionless Example: Mandaus	0x3A	the gateway is listening	
75	DR8	Value	Example: Mondays Note: See Table 1 for more info.	0x02	instelling	
76	DR9	DIF	16-bit integer + Extension	0x82	- X7 1	
77	DR9	DIFE	Storage 4	0x02	Value on	
78	DR9	VIF	Extension table	0xFD	parameter "Start time", shown as	
79	DR9	VIFE	Dimensionless	0x3A	minutes after	
80	DR9	Value (LSB)	Example: 10:01 (0x0259)	0x59	midnight	
81	DR9	Value (MSB)	Example: 10.01 (0x0239)	0x02		
82	DR10	DIF	48-bit integer	0x06		
83	DR10	VIF	Time Type I format	0x6D		
84	DR10	Current Time		0x02		
85	DR10	Current Time	0x01 Current time		Current time	
86	DR10	Current Time	Example : 2001-0101 00:01:02	0xC0	- Current time	u
87	DR10	Current Time		0x01		Application
88	DR10	Current Time		0x01		
89	DR10	Current Time		0x00		ild
90	DR11	DIF	16-bit integer	0x02		\psi
91	DR11	DIFE	Extension table	0xFD	Current battery	A
92	DR11	VIF	Voltage (mV)	0x46	level	
93	DR11	Value (LSB)	Example: 3600 (0x0E10)	0x10	lever	
94	DR11	Value (MSB)	• • • • • • • • • • • • • • • • • • • •	0x0E		_
95	DR12	DIF	Variable Length	0xCD		
96	DR12	DIFE	Storage 5	0x02		
97	DR12	VIFE	Extension table	0xFD	_	
98	DR12	VIF	Dimensionless	0x3A	_	
99	DR12	LVAR	EMEI string length (15 bytes)	0x0F		
100	DR12	EMEI Ascii string (LSB)		0x34		
101	DR12	EMEI Ascii string		0x33		
102	DR12	EMEI Ascii string		0x32		
103	DR12	EMEI Ascii string		0x31		
104	DR12	EMEI Ascii string		0x30	IMEI number	
105	DR12	EMEI Ascii string		0x39	IIVILI number	
106	DR12	EMEI Ascii string		0x38		
107	DR12	EMEI Ascii string	Example: 012345678901234	0x37		
108	DR12	EMEI Ascii string		0x36		
109	DR12	EMEI Ascii string		0x35		
110	DR12	EMEI Ascii string		0x34		
111	DR12	EMEI Ascii string		0x33		
112	DR12	EMEI Ascii string		0x32		
113	DR12	EMEI Ascii string		0x31		
114	DR12	EMEI Ascii string (MSB)		0x30		

115	DR13	DIF	Variable Length	0x8D		
116	DR13	DIFE	Storage 6	0x03	-	
117	DR13	VIF	Extension table	0xFD	-	
118	DR13	VIFE	Dimensionless	0x3A	-	
119	DR13	LVAR	ICCID string length (19-20 bytes)	0x14	-	
120	DR13	ICCID Ascii string (LSB)		0x39	-	
121	DR13	ICCID Ascii string		0x38		
122	DR13	ICCID Ascii string		0x37		
123	DR13	ICCID Ascii string		0x36		
124	DR13	ICCID Ascii string		0x35		
125	DR13	ICCID Ascii string		0x34		
126	DR13	ICCID Ascii string		0x33	ICCID number	
127	DR13	ICCID Ascii string		0x32	of SIM-card	
128	DR13	ICCID Ascii string		0x31	number	
129	DR13	ICCID Ascii string	E	0x30		
130	DR13	ICCID Ascii string	Example: 01234567890123456789	0x39		
131	DR13	ICCID Ascii string		0x38		
132	DR13	ICCID Ascii string		0x37		
133	DR13	ICCID Ascii string		0x36		
134	DR13	ICCID Ascii string		0x35		
135	DR13	ICCID Ascii string		0x34		
136	DR13	ICCID Ascii string		0x33		
137	DR13	ICCID Ascii string		0x32		n
138	DR13	ICCID Ascii string		0x31		tio
139	DR13	ICCID Ascii string (MSB)		0x30		ca
140	DR14	DIF	8-bit integer	0x01		Application
141	DR14	VIF	Extension table	0xFD	_	Αр
142	DR14	VIFE	RSSI	0x71	RSSI in the LTE	,
143	DR14	Value	Note: Calculate this value as two's (2's) complement	0xB9	M1 network	
144	DR15	DIF	8-bit integer	0x01		
145	DR15	VIF	Extension table	0xFD	Hardware model	
146	DR15	VIFE	Model version	0x0C	-	
147	DR15	Value	Example: 0x01	0x01		
148	DR16	DIF	8-bit integer	0x01	-	
149	DR16	VIF	Extension table	0xFD	Hardware	
150	DR16	VIFE	Hardware version	0x0D	version	
151	DR16	Value	Example: 0x01	0x01		
152	DR17	DIF	16-bit integer	0x02		
153	DR17	VIF	On time days	0x23	On time (days)	
154	DR17	Value (LSB)	Example: 2051	0x03	since powerup	
155	DR17	Value (MSB)		0x08		
156	DR18	DIF	32-bit integer	0x04	Number of	
157	DR18	VIF	Operating time seconds	0x24	seconds for	
158	DR18	Value (LSB)		0x07	which the	
159	DR18	Value	Example: 9173511 seconds	0xFA	modem has been	
160	DR18	Value	(0x008BFA07)	0x8B	active	
161	DR18	Value (MSB)	0x00			

162	DR19	DIF	32-bit integer + Extension	0x84		
163	DR19	DIFE	Subunit 1	0x40	Number of	
164	DR19	VIF	Operating time seconds	0x24	seconds for	
165	DR19	Value (LSB)		0x07	which the wM- Bus radio has	
166	DR19	Value	Example: 9173511 seconds	0xFA	been in listen	
167	DR19	Value	(0x008BFA07)	0x8B	mode	
168	DR19	Value (MSB)		0x00	mode	
169	DR20	DIF	8-bit integer + Storage + Extension	0xC1		
170	DR20	DIFE	Storage 7	0x03		
171	DR20	VIF	Extension table	0xFD	Shows which	
172	DR20	VIFE	Dimensionless	0x3A	weekday(s) gateway will	
			Example: Monday + Wednesday		upload data	
173	DR20	Value		0x0A	aproud data	
			Note: Refer to Table 1.			_
174	DR21	DIF	16-bit integer + Extension	0x82	The time for	ior
175	DR21	DIFE	Storage 8	0x04	which the	ati
176	DR21	VIF	Extension table	0xFD	modem will	Application
177	DR21	VIFE	Dimensionless	0x3A	upload stored	pp
178	DR21	Value (LSB)		0x1E	data, shown as minutes after	A
179	DR21	Value (MSB)	Example : 00:30	0x00	midnight	
180	DR22	DIF	16-bit integer + Extension + storage	0xC2		
181	DR22	DIFE	Storage 9	0x04	The interval for	
182	DR22	VIF	Extension table	0xFD	which the	
183	DR22	VIFE	Dimensionless	0x3A	modem will	
184	DR22	Value (LSB)	E-complex 20 minutes	0x1E	upload data	
185	DR22	Value (MSB)	Example: 30 minutes	0x00		
186	DR23	DIF	16-bit integer + Extension	0x82		
187	DR23	DIFE	Storage 5	0x05	Number of NTP	
188	DR23	VIF	Extension table	0xFD	server connection	
189	DR23	VIFE	Dimensionless	0x3A	retries since last successful NTP	
190	DR23	Value (LSB)	Enganistic 5	0x05	connection	
191	DR23	Value (MSB)	Example: 5	0x00	Connection	

Table 1: Bit representation for days when gateway is listening

Table 1. bit representation for days when gateway			
Bit	Info		
0 (0x01)	Sunday		
1 (0x02)	Monday		
2 (0x04)	Tuesday		
3 (0x08)	Wednesday		
4 (0x10)	Thursday		
5 (0x20)	Friday		
6 (0x40)	Saturday		
7 (0x80)	NOT USED		

Ready-for-conf packet

The *Ready-for-conf* packet is sent from the device every time upload of data from gateway is finished to MQTT. This indicates that the gateway is ready for configuration via MQTT.

The packet is always sent to the topic LAS/W/I/12345678 where 12345678 is the serial number of the gateway.

Byte No.	Field Name	Content	Info	Byte data (example)	Layer
1	Start	Start-byte		0x68	
2	L-Field	Telegram length	If packet is longer than 255 then both L-fields should be added,	0x45	
3	L-field	Telegram length	otherwise the L-fields are the same.	0x45	Data Link
4	Start	Start-byte		0x68	
5	C-Field	SND_NR		0x44	
6	A-Field	Primary addressing	0xFD = Use secondary addressing	0xFD	
7	CI-Field	Long header (0x72)		0x72	
8	ID-Field	Identification number (LSB)		0x00	
9	ID-Field	Identification number	E	0x11	
10	ID-Field	Identification number	Example: 33221100	0x22	
11	ID-Field	Identification number (MSB)		0x33	
12	Manufacturer	Manufacturer code (LSB)	LAS	0x33	
13	Manufacturer	Manufacturer code (MSB)	LAS	0x30	Transport
14	Version	Version		0x07	
15	Туре	Device type		0x1B	
16	Acc.	Access number		0x01	
17	Status	Errors and alerts	Example: Low battery	0x04	
18	Config.	Configuration field	Example: Encryption off	0x00	
19	Config.	Configuration field	Example. Encryption off	0x00	

Indications of a gateway

The device can use both visual indications (LED) and sound indications to show what is currently happening, e.g., how the startup sequence is going or if there are any errors after startup.

Visual and sound indications during startup sequence of a gateway

Start by powering on the device. The following will occur during startup:

- 1 Buzzer beeps 10 times fast and the green LED flashes, both with the same speed. When the beeping stops, the green LED turns off.
- 2 The blue LED turns on and is only on for about 60-90 seconds. During this time, the internal flash memory is cleared.
- When the internal flash memory is cleared, the device beeps one time, the blue LED turns off and the green LED turns on. This indicates that the startup sequence is completed.
- 4 The device starts listening for incoming wM-Bus data. For each packet received, the blue LED flashes. During the first 3-4 minutes after the startup sequence is complete, the device accepts configuration data, for example, by using a Lansen configuration dongle (LAN-WMBUS-D1/D2-TC).
- The modem tries to connect to the MQTT server using the settings in the device.

 Note: It is important that all settings are entered correctly in step 4 for the device to be successful in this step.

Visual indications in active mode (startup sequence completed)

After the startup sequence, see previous chapter, a gateway use LEDs to indicate different things, see tables below. There are LEDs both on the larger bottom card (carrier PCB) and the smaller top card (modem card PCB).

LED color	Location	Behavior	Meaning	
Green	Carrier PCB	Steady on	The device has power.	
Blue	Carrier PCB	Quick flash	A packet was received by the wM-Bus radio.	
Red	Carrier PCB	Steady on	The device has an active connection to the MQTT serve	
Red	Modem card PCB	Flash every 3 seconds	The device is sending data.	
Red	Modem card PCB	Flash every 800 ms (0.8 seconds)	Not registered to a network.	
Red	Modem card PCB	Flash every 300 ms (0.3 seconds)	Registered to a network.	

Note: For battery version the LED indication will be turned off after 15 minutes to save power. Only a red LED flash every minute will indicate the device is operating. The indication will be active again for 15 minutes if waking the device using a magnet.

Connection sequence to MQTT for uploading data (Battery Gateway)

This chapter describes the connection sequence for a battery-operated gateway.

Note: The setting 'Always connected to MQTT' must not be set on a battery-operated gateway!

- 1 The modem is started and immediately searches for an LTE M1 network.
- When an LTE-M1 network is found, the APN server is retrieved from the network and stored in a temporary memory.
- 3 The modem then connects to the NTP server as specified by the customer. The default NTP server is pool.ntp.org unless it has been changed.
- 4 The modem then tries to connect to the MQTT server.
- 5 If the connection is successful, then the RED LED on the carrier card (bottom PCB) is turned on and the gateway starts uploading all stored meter data in its internal flash memory to the MQTT server.
- When the upload is complete, the gateway register itself to receive configuration data from the MQTT server using address LAN/W/C/01234567, where 01234567 is the ID number of the gateway.
- 7 Once ready to receive configuration data, the gateway will listen to incoming MQTT configuration data by default for 30 seconds.
 - It is possible to extend this time by sending a command to the gateway. Refer to section **Connecting and working with Lansen Configurator (battery gateway)** to change configuration time.
- 8 Once the configuration time is up, the gateway turns off the modem completely and waits until it is time to upload data again.

Connection sequence to MQTT for uploading data (Mains Gateway)

This chapter describes the connection sequence for a mains-operated gateway. In this example, the setting 'Always connected to MOTT' is set to be active.

- 1 The modem is started and immediately searches for an LTE M1 network.
- When an LTE-M1 network is found, the APN server is retrieved from the network and stored in a temporary memory. **Note**: For GPRS, the APN must be entered manually as a setting to the gateway.
- 3 The modem then connects to the NTP server as specified by the customer. The default NTP server is pool.ntp.org unless it has been changed.
- 4 The modem then tries to connect to the MQTT server.
- 5 If the connection is successful, then the RED LED on the carrier card (bottom PCB) is turned on and the gateway starts uploading all stored meter data in its internal flash memory to the MQTT server.
- When the upload is complete, the gateway registers itself to receive configuration data from the MQTT server using address LAN/W/C/01234567, where 01234567 is the ID number of the gateway.
- 7 Since the setting 'Always connected to MQTT' is active, the gateway will keep the connection to the MQTT server active and transmit data immediately when it's picked up on the wM-Bus radio interface. The configuration interface will also be active all the time so that configuration can be made using the MQTT interface.

Notes regarding SIM-card and PIN

The device supports either an eSIM or a full-size SIM-card. If eSIM is required then the SIM must be mounted during production, thus must be ordered in advance.

The SIM card must not have any PIN code, therefore the PIN must be inactivated.

For improved security, the SIM-card should be locked to the specific modem using the network provider webservice or similar.

There is usually also an option to lock the SIM-card to the first device it is powered up in.

Notes regarding gateway antennas

Different variants of the device come with different setups of the antennas, where it uses either internal or external antennas on either the wM-Bus or MQTT interface. Typical device name is as below where X1 and X2 is present if the external antenna interface is used. If not present, then the internal antenna is used instead.

LAN	- WMBUS	- B4	- BE/M	- LR	- A1/A2	- (X1)	- CATM1	- (X2)
Manufacturer	Input	Device	BE: Battery	LR: Long Range	A1: IP40	<u>Optional</u>	Output	<u>Optional</u>
			M: Mains		A2: IP65	External antenna	ļ	External antenna
						for input		for output
						(WMBUS)		(CATM1)

Additional information regarding antennas on the gateway:

- The gateway uses one broadband antenna to cover all LTE-M1 bands, either with internal or external antenna.
- If the internal input (wM-Bus) is used, then two internal antennas are used for maximum range in all directions. The wM-Bus radio listens using one antenna at a time and change antenna every 25-35 seconds.

Power consumption

The device has four main power consumption modes with typical consumption as seen in the table below.

Mode	Current consumption
Sleeping, only the time clock is running.	20uA
Radio for wM-Bus active and receiving data.	12 mA
Modem is active and transmitting data.	150 mA
Modem is on idle, waiting for configuration data.	24 mA
Battery leakage	760 mAh

Note: The status packet contains some information about how much time a device has spent in different modes. Note that all timers reset to 0 on power cycle.

- 1) Total on time since powerup.
- 2) Total active time for the radio (wM-BUS).
- 3) Total time the modem has been on.

Battery lifetime (Battery Gateway)

Since the battery driven gateway has a large super capacitor to assist the battery, it is hard to measure the true battery voltage to determine the service life left on the device. One method to determine the lifetime to get an early warning is by using calculations based on how long the device has spent in the different modes as defined in chapter **Power consumption**.

Note: The total battery capacity of the battery is 38000 mAh.

EXAMPLE

The device has been running for 1 year and we want to know the remaining lifetime with the same usage as the first year. The settings and the total time in different modes of the device has been as follows:

Setting:

- Modem uploads data every day.
- Radio (wM-Bus) active 15 minutes/day.
- Total on time since powerup 365 days.
- Radio (wM-Bus) active 328500 seconds (15 minutes per day for 365 days).
- Modem active 21900 seconds (one minute per day for 365 days).

To get the power consumption for each mode, the equation below is used.

 $powerConsumption = timeInSeconds \cdot currentConsumption$

Sleeping mode power consumption:

Total on time since powerup is 365 days. Convert this to seconds as below.

$$timeInSeconds = 365 days \cdot 24 h/day \cdot 60 min/h \cdot 60 min/s = 31 536 000s$$

The current consumption, according to chapter **Power consumption**, when the device is sleeping is 20 uA. Inserting the time calculated above with the power consumption in the first equation gives:

 $totalPowerConsumption = 31\,536\,000\,s \cdot 20\,\mu A = 630\,720\,000\,\mu As = 630720\,m As$

Convert this value to mAh by dividing the result by 3600.

$$consumptionSleeping = \frac{630720 \text{ mAs}}{3600} = 175.2 \text{ mAh}$$

Radio (wM-Bus) active power consumption:

Total time is already in seconds so we can calculate the total power consumption immediately since the power consumption when a radio is active is 12 mA, according to chapter **Power consumption.**

$$totalPowerConsumption = 328500 s \cdot 12 mA = 3942000 mAs$$

Convert this value to mAh by dividing the result by 3600.

$$consumptionRadio = \frac{3942000 \text{ mAs}}{3600} = 1095 \text{ mAh}$$

Modem active power consumption

Total time is already in seconds so we can calculate the total power consumption immediately since the power consumption when a radio is active is 160 mA, according to chapter **Power consumption**.

$$totalPowerConsumption = 21900 \text{ s} \cdot 160 \text{ mA} = 3504000 \text{ mAs}$$

Convert this value to mAh by dividing the result by 3600.

$$consumptionModem = \frac{3504000 \, mAs}{3600} = 973.3 \, mAh$$

Battery leakage:

The battery leakage is 760 mAh, according to chapter **Power consumption.**

Total consumption year 1:

total Power Consumption

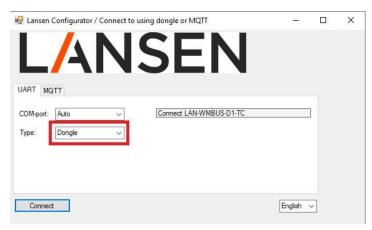
= consumptionSleeping + consumptionRadio + consumptionModem + batteryLeakage= 175 + 1095 + 973 + 760 = 3003 mAh

Therefore, the device has used 3003 mAh in one year. This means that the current available capacity left is: $available Capacity = 38000 \, mAh - 3003 \, mAh = 34997 \, mAh$

To get expected lifetime left, we take the above calculation and divide by the totalPowerConsumption after a year. expectedLifetime = availableCapacity/totalPowerConsumption = 34997 mAh/3003mAh = 11.65 years

Using program Lansen Configurator for configuration of the gateway

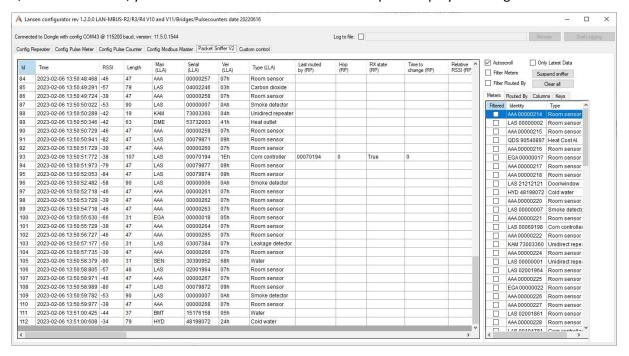
The Lansen Configurator can be used to configure the gateway via the 868 MHz wM-Bus interface using a Lansen configuration dongle (LAN-WMBUS-D1/D2-TC) or directly via the MQTT server.


Note: To configure the device via the MQTT server, the device must first be connected to the MQTT server which requires all MQTT settings to be set correctly.

Connect to the gateway over wM-Bus interface using a Lansen USB-dongle

To connect to the gateway using a Lansen configuration dongle (LAN-WMBUS-D1/D2-TC), perform the steps below. Select the Type 'Dongle' and click Connect.

If the program fails to connect to the dongle, try to select the com-port manually by changing the field from 'Auto' to the com-port of the dongle.


If the program still fails, it might be that the computer has failed to download the correct driver. In this case, visit our webpage (https://www.lansensystems.com/download/) and download the corresponding driver for the dongle you have.

The below window is shown once the connection to the dongle is successful.

In the sniffer tab, Packet Sniffer V2, you can see all the devices in the area as picked up by the dongle.

- To configure a gateway, go to the tab called "Config Repeater" and enter the eight serial numbers, visible on the label on the gateway, either on the poke protection or on the front of the device.
- Click 'Connect'. The program will start connecting to the gateway and read out all its data. The process takes 20-60 seconds.
- If the program is unable to connect, make sure that the gateway is not sleeping and that the gateway and dongle are at least 1 meter apart, so the radio signal isn't too strong. If the gateway is sleeping, then you can wake the gateway using a magnet. Then click 'Connect' again.

If encryption is enabled on the gateway, then a valid AES-key must be entered in the field marked below to change settings. Note that it's always possible to read out all settings without the AES-key except for MQTT settings that will only show the first letter of each setting.

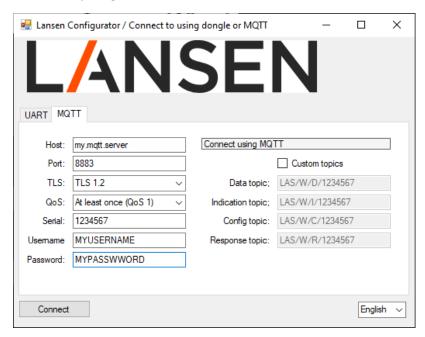
Connect to the gateway over MQTT interface using Lansen Configurator

Start the Lansen Configurator and select the tab MQTT, as seen below, and enter the settings to the MQTT server to connect via the MQTT server. Example settings can be seen in the picture below.

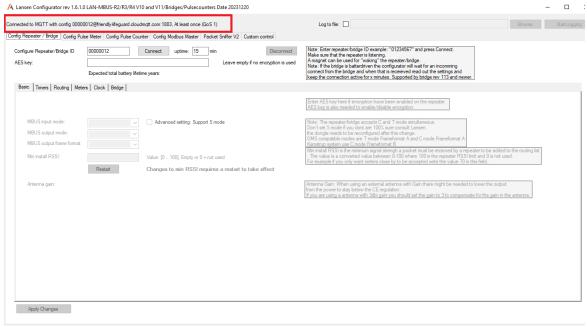
Host: MQTT server address, for example, my.mqtt.server.

Port: Port number to MQTT server. Typical 8883 for non-encrypted connection.

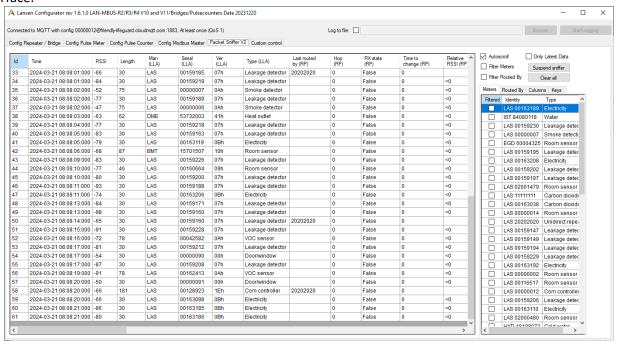
TLS: Enter if TLS should be used in the connection between Lansen Configurator and the MQTT server.

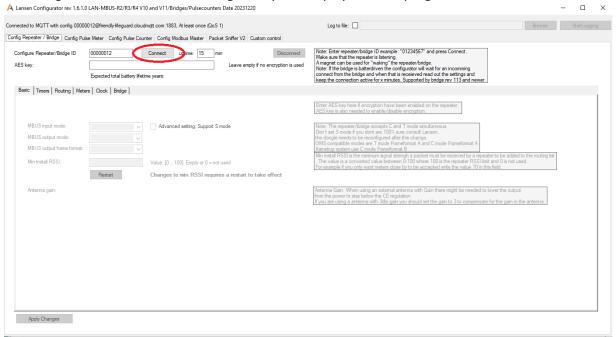

QoS: Typically set to 'At least once (QoS 1)', depending on your MQTT server the value might need to be changed.

Serial: The serial number of the gateway, for example, 01234567.

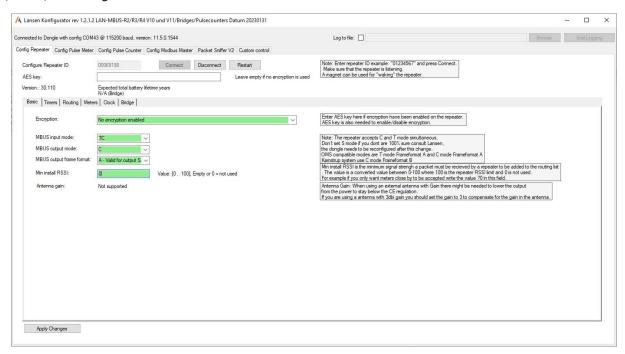

Username: The username to connect to the MQTT server.

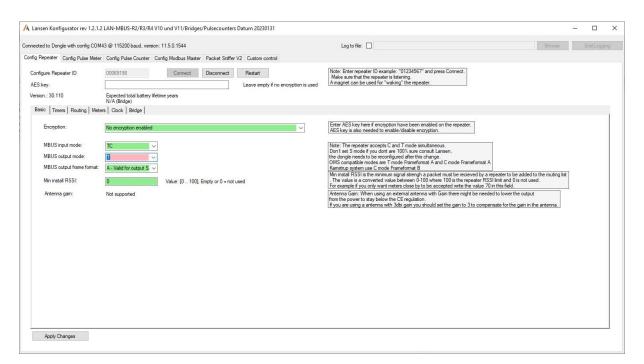
Password: The password to connect to the MQTT server.


When everything is filled in, click 'Connect'.


If everything works, then you are now connected to the MQTT server. In the example below, connection has been made to a gateway with serial number 0000012 to the MQTT server friendly-lifeguard.cloudmqtt.com.

In the sniffer tab, Packet Sniffer V2, one will see all data that are transmitted by the gateway over the MQTT interface.


To change settings to the gateway one must first connect to the gateway. This is done by clicking 'Connect' and then all settings will be retrieved from the gateway and displayed in the program.


Configuration settings for a gateway

This chapter is the same regardless if the connection has been made using the wM-Bus interface (see chapter Connect to the gateway over wM-Bus interface using a Lansen USB-dongle or the MQTT interface (see chapter Connect to the gateway over MQTT interface).

Once connected to a gateway, the different settings can be seen in the different tabs called *Basic*, *Timers*, *Routing*, *Meters*, *Clock*, and *Bridge*.

When a setting is changed, it changes color from green to red. To send the setting to the bridge click *Apply Changes*. When a setting is successfully received by the gateway, it responds either with the new setting, if the setting was accepted, or the old setting, if the setting was not acceptable. The changed setting will then change back to green.

Settings in the gateway

The following chapter will explain in detail what all the settings that are available mean. Note that all settings in the following chapter are supported by the Ethernet and LTE GW.

Basic-tab

This tab contains the so called "basic" parameters of the gateway.

AES key

Note: This option does not affect the encryption of incoming packets from sensors/meters.

This parameter is used to enable/disable the encryption options for a gateway. By default, the gateway is configured to not use encryption. This encryption is NOT used for encrypting incoming data packets from sensors/meters, it is only used for packets sent to the gateway for configuration from for example the LAN-WMBUS-D1/D2-TC configuration device.

Note: The AES key is not needed when configuring the device using an active MQTT connection.

AES key:		Leave empty if no encryption	n is used
Encryption:	No encryption enabled		\

The different encryption options can be seen by clicking on the arrow marked by a box in the picture above. There are four options available, see table below. To change from one option to another, the correct AES key must be written in the field AES key.

Option	Meaning		
No encryption enabled	Encryption is not enabled (default). When this option is enabled, the user does not need to write a key in the field AES key to change the other parameters for the GW.		
Enabled for configuration	Encryption is enabled. When this option is enabled, the field AES key must contain the correct key for the GW to apply any parameter changes.		
Enabled: OMS time sync	This option enables the OMS time sync. This option needs to be enabled if time synchronization should only be allowed if the time synchronization packet is sent encrypted. This packet is sent from the gateway using the OMS time synchronization format.		
Enabled: OMS time sync and configuration	This option combines the two options above, i.e., Enabled for configuration and Enabled: OMS time sync.		

MBUS mode

These settings are used to set the input and output communication format for the gateway.

MBUS input mode:	TC	~	Advanced setting: Support S mode
MBUS output mode:	С	~	
MBUS output frame format:	A - Valid for output S	~	

By default, the gateway always accepts incoming data in C- and T-mode but the output mode can be changed to S-, C-, or T-mode with frame format A or B. Recommended use is:

- Input = TC
- Output = C
- Frame format = A

The gateway can listen for sensors in S-mode by first enabling "Advanced setting" and then setting the input mode to S-mode. Make sure all other configurations of the gateway are done before setting it to S-mode as it will not be able to configure it afterwards (if using the LAN-WMBUS-D1/D2 to configure the device).

Note: If input mode is set to S, it will not be possible to configure the gateway further until the USB-dongle has been configured to send in S-mode. Contact Lansen for more information on how to proceed with this.

Note: If input mode is set to S-mode, then the gateway will not receive with C- and T-mode.

Min install RSSI

This parameter is used to ensure only meters with good signal strength is retransmitted by the gateway.

By using this parameter, one can control the minimum signal strength a meter must be received by the gateway to be added to the internal routing list of the gateway. This can be used in an environment where multiple gateways are deployed. By using this setting, only meters with a good connection to the gateway is handled, thus decreasing the risk for data collision in the air due to less retransmissions by fewer gateways.

Note: A gateway must be restarted after this parameter has changed, otherwise the internal routing list will not be changed. A restart can be performed by disconnecting and connecting the power/battery again or by clicking on *Restart* in Lansen Configurator.

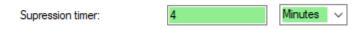
Antenna gain

This setting is used if a GW has a connected external antenna with a gain.

Having a large external antenna, especially with a gain, is advantageous since it allows a gateway to have a better reception. However, our gateways are built to send on the maximum allowed output power and using an antenna with gain causes the gateway to transmit with an output power greater than the legal limit.

To counteract this, set this setting to the specified gain on the external antenna and the gateway will lower its output power to match the gain, thus transmitting at the legal limit. This allows the gateway to use the full potential of the antenna when receiving while staying at the legal limit when transmitting.

NOTE: This parameter is only applicable to models which have external antenna on the w-MBus interface (ending with an -X on the label).


Timers-tab

This tab contains parameters for the gateway which are timer-based, such as listen and pause timer. It is also possible to configure if the gateway should wake up on specific days, e.g., Mondays.

Note: The Ethernet gateway does not have all these settings since it is always on due to being mains powered.

Suppression timer

This setting is used to reduce how often packets from each meter is stored by the gateway and the time can be set in either minutes or hours.

Start time

This setting is used to control at what time and how often a gateway should start listening on selected weekdays.

Every time the gateway wakes up, it listens for data for the duration configured on the setting *Listen/pause timer* and then goes to sleep until it is time to wake up again.

To setup this properly, four options are available. From left to right in the picture above, they mean:

- Checkbox: Activate/deactivate this parameter
- Time field: Define which time (UTC) the gateway should start listening
- Period interval: How often the gateway should start listening
- Active days: The gateway will start listening for each checkbox marked

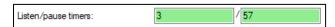
Checkbox

When this checkbox is marked, the parameter *Start time* is active. The gateway will start listening at the time, intervals, and days specified by the next options.

Time field:

The time set in this field indicates what time (UTC) each day the gateway will wake up and store packets. The time defined in this field must be equal or less than the chosen period interval. Furthermore, the gateway will be listening for the time defined in the parameter *Listen/pause timers*.

Period interval:


This option defines how often the gateway will start listening from the time set in the option Time field.

Active days:

This option controls which days the gateway is listening on. Simply mark the checkboxes for the days the gateway should be listening and uncheck the others.

Listen/pause timers

This parameter sets how many minutes a gateway should listen for incoming wM-Bus packets and pause (not retransmit). The gateway alternates between these states.

The ratio between these two settings will affect the expected lifetime of the battery in the gateway and should be set according to the need for data from meters.

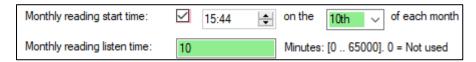
Note: For mains-operated gateway (LAN-WMBUS-B4-M), this parameter can be set to 1/0 (always listening).

Note: This parameter should be the same for all battery-operated repeaters/gateway in the same setup.

Magnet reed timer

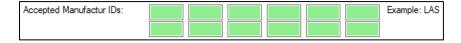
Note: This setting is not supported by the ethernet gateway.

This parameter sets how many minutes the gateway is in forced listening mode when a magnet has been used against it. This can be used, for example, when configuration of a gateway is needed or during installation.


This mode is activated by using a permanent magnet to the left of the label, on the enclosure, for at least one second. This will cause the gateway to beep and wake up.

During the first minute after using a magnet, a gateway will only listen for configuration packets. This can be used if the gateway is being configured in an area with a lot of sensors. For the rest of the time defined by this parameter, the gateway will retransmit incoming packets as normal with the suppression timer. Once this timer is out, the gateway will go to sleep according to the pause time set on the parameter *Listen/pause timer*.

Monthly reading start time


Note: This setting is not supported by the ethernet gateway.

This setting is a separate timer which is used to wake the gateway at a specific date and time once a month and is useful in systems where meter data is also needed at a specific date and time every month.

Accepted Manufacturer IDs

This parameter is used if the gateway should only store packets from meters with a specific manufacturer code. In other words, this is manufacturer code filtering. This is useful in areas where different companies and manufacturers are active. If all fields are empty, no filtering is done by the gateway and packets from all meters will be stored.

Route messages

This parameter has two options:

- Route only OMS messages: The gateway will only store OMS compatible packets
- Route all messages: The gateway stores both OMS and non-OMS compatible packets

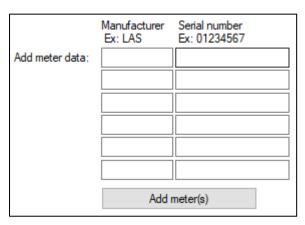
Meters-tab

The settings and options in this tab have to do with the internal routing list of a gateway. In this tab, meters can be viewed, added, and removed as explained in each chapter below.

Automatic meter installation

When this checkbox is marked, a gateway will automatically add received meters to its internal routing list of maximum 2000 unique meters. If it is not desired to add any more meters or to have full control of which meters are stored by a gateway, uncheck the checkbox.

NOTE: If this setting is disabled and no meters are stored in the internal routing list, then no meters will be stored by the gateway. In this case, meters must be added manually.


Number of meters

The field displays how many meters there currently are in the internal routing list of the gateway. On the right-hand side of the field is the currently available number of slots shown. To view all the meters in the internal routing list, click on the button **Load all meters**. This will fill up the list on the right-hand side of the program.

Add meter(s) manually to internal routing list

This is where a user can manually add a meter to the internal routing list of a gateway.

To add a meter to the internal routing list, fill in the manufacturer ID (left field) and the serial number (right field) and click on the button **Add meter(s)**. The meter(s) will then be added to the gateway.

NOTE: Adding meters manually can only be done if the parameter *Automatic meter installation* is disabled.

Add meter(s) from file to internal routing list

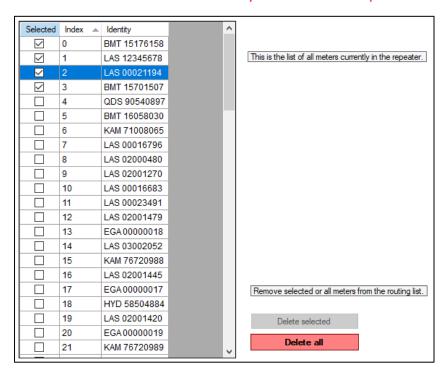
Instead of adding a meter one by one, a user can instead import a csv-file with many meters.

Import meter data:			Example CSV file:
	Browse	Import .csv-file	ManufacturerCode;IdentificationNumber LAS;11111111 LAS;22222222

To add a whole file, click on "Browse" and select the csv-file with the meters to be added to the gateway. Once a file has been selected, click "Import csv-file" to start uploading the meters in the file.

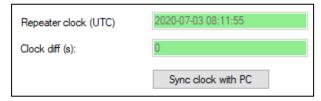
Note: The csv-file **MUST** on the first row start with the text **ManufacturerCode;IdentificationNumber** otherwise the file will not be uploaded to the gateway.

Note: Adding meters manually can only be done if the parameter Automatic meter installation is disabled.


Delete meter(s)

This is done if one, or several, meters should not be retransmitted by a gateway. To see this list, first click on 'Load all meters' to the left of the view below.

To remove all meters, click on the button **Delete all**. This is only possible if *Automatic meter installation* is enabled.


Use the button **Delete selected** if only selected meters should be deleted. Simply mark the meters in the list which are unwanted and click on the button **Delete selected** – the gateway will then remove the selected meters from its internal routing list.

Note: The button **Delete selected** is only enabled when the parameter *Automatic meter installation* is disabled.

Clock-tab

This tab shows information about the internal clock of the gateway.

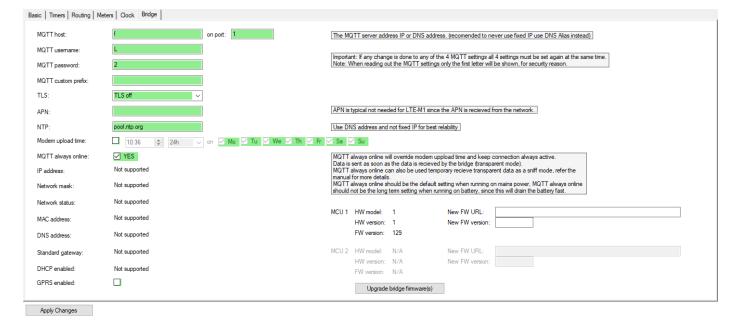
The upper field, *Repeater clock (UTC)*, displays the internal clock of the gateway as UTC-time while the lower field, *Clock diff (s)*, shows how many seconds the internal clock of the gateway differs from the current clock on the PC.

The gateway keeps synchronization using the configured NTP server so no synchronization with PC is needed. To synchronize the gateway clock to the PC, simply click on the button **Sync clock with PC**.

NOTE: The time synchronization is performed each time the device connects to the internet or every 12 hours. The gateway LAN-WMBUS-B4 has a highly accurate onboard temperature compensated clock for minimum drift and the expected drift is less than 0.5 seconds/day.

Bridge-tab

This tab contains settings on how the gateway should connect and communicate with MQTT. Some of these settings are only applicable for the LTE gateway while others are for the ethernet gateway.


In this tab it is possible to configure the MQTT server addresses. The new setting will come into effect on the next connect to internet or by forcing a new connect to internet by doing a restart. To do a restart, click on the button **Restart** in the *Basic* tab.

Note: When connecting via the LAN-WMBUS-D1/D2-TC dongle and not entering an AES key only the first letter of the MQTT settings will be retrieved.

<u>Important:</u> Make sure that all settings are valid when changes are made on a device in a remote location. If the settings are incorrect then it will not be possible to do any more configurations using the MQTT interface. Make sure that all 4 settings are set correctly, MQTT host, username, password and port since they are sent in the same configuration packet to the GW. Meaning if only 1 parameter is changed the 3 other parameters are also changed to the current value in the GUI.

LTE gateway specific settings

These settings are only applicable for the LTE gateway and not for the ethernet gateway.

TLS

It is possible to turn on communication using TLS for the gateway when communicating with the MQTT broker.

APN

It is possible to enter a specific APN, if needed. This setting is always needed when the gateway is configured to use GPRS communication protocol. For LTE, the APN will be retrieved from the network if left empty in the configurator.

NTP

It is possible to setup a specific NTP server if desirable.

Modem upload time

This is the time that the modem will connect to the MQTT server and upload the stored data. If the setting MQTT always online is set to yes, this setting has no effect.

Note: Do not set the setting *Modem upload time* to the same value as the listen time under *Listen/pause timer*.

The best solution on a battery driven gateway is to first listen for incoming wM-Bus data then setup the gateway to upload the data later the same day.

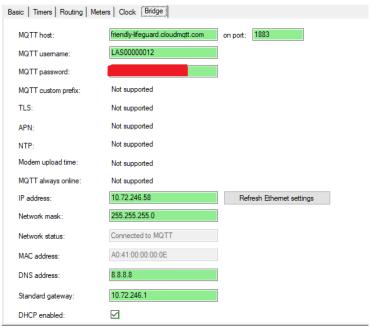
Example:

Listen start time = 05:20 Listen time: 30 minutes Modem Upload time: 06:00

MQTT always online

This means that the gateway will always be connected to the MQTT server. If connection drops it will automatically try to connect again.

Note: NEVER use this option for battery driven gateways since this will drain power really fast.


GPRS enabled:

It is possible to select if GPRS should be used instead of LTE-M1. Checkmark if GPRS should be used. GPRS will be activated on the next connection to the MQTT server. To force a reconnection, it is possible in the Basic tab to press a "restart" button to restart the complete GW.

Note: GPRS is not recommended when operating on battery.

Ethernet gateway specific settings

These settings are only applicable for the ethernet gateway and not for the LTE gateway.

DHCP enabled:

Turn on or off depending on if DHCP should be used. If DHCP is enabled on the gateway, then IP address and network mask are retrieved from the DHCP server. If DHCP is disabled on the gateway, then IP address and network mask must be manual entered.

IP address

If DHCP is used the current IP address is shown.

If DHCP is not used (static IP) the address entered by the user is shown.

Network mask

If DHCP is used the current Netmask address is shown.

If DHCP is not used (static IP) the Netmask address entered by the user is shown.

Standard gateway

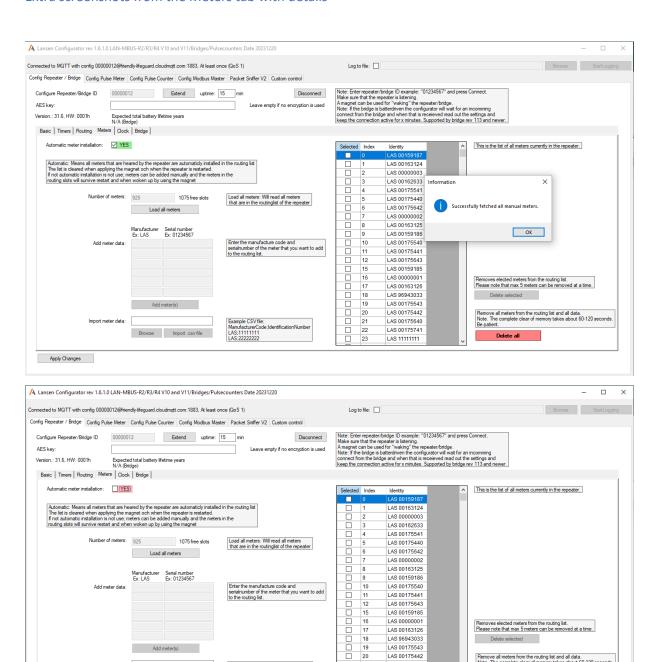
If DHCP is used the current standard gateway address is shown.

If DHCP is not used (static IP) the standard gateway address entered by the user is shown.

Mac address

The unique MAC address is entered in production and cannot be changed.

Network status


The current status of the network is shown in this window.

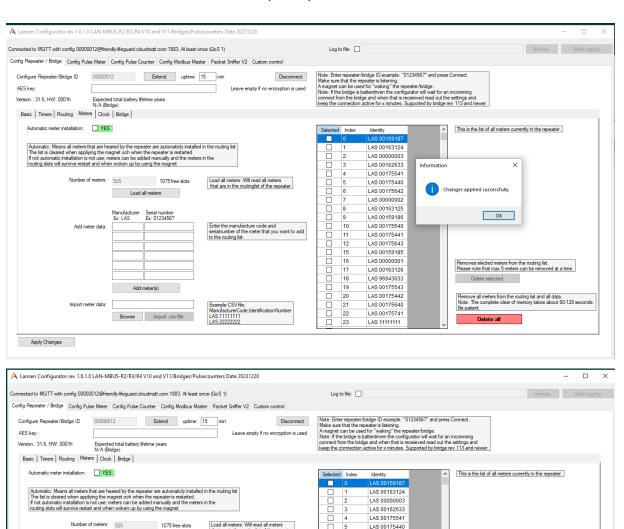
Extra screenshots from the Meters tab with details

Import meter data:

Apply Changes

Browse Import .csv-file

21


LAS 00175640 LAS 00175741 Remove all meters from the routing list and all data. Note. The complete clear of memory takes about 60-120 seconds. Be patient.

Load all meters

Add meter(s)

Apply Changes

Browse Import .csv-file

Enter the manufacture code and serialnumber of the meter that you want to add to the routing list. LAS 00000002 LAS 00163125 LAS 00159186

LAS 00175540

LAS 00175643

LAS 00159185

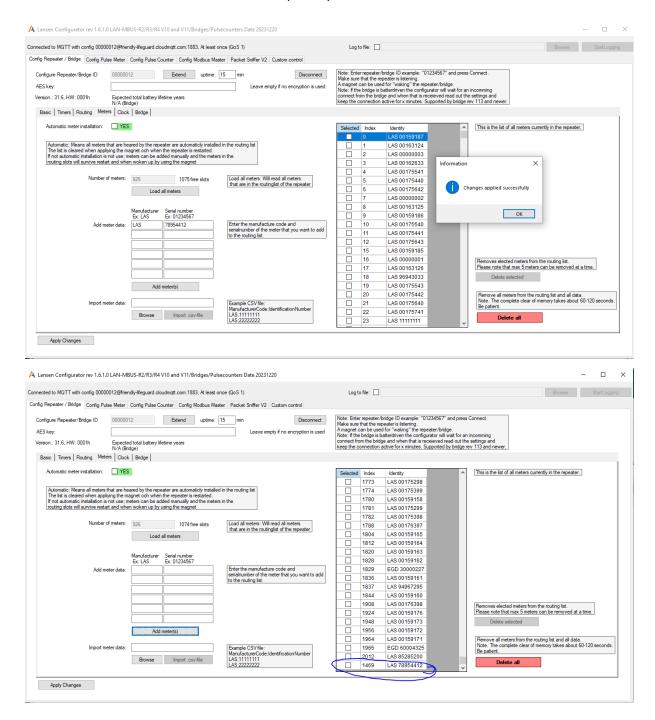
LAS 00163126

LAS 96943033

LAS 00175640

Removes elected meters from the routing list. Please note that max 5 meters can be removed at a time.

Remove all meters from the routing list and all data.

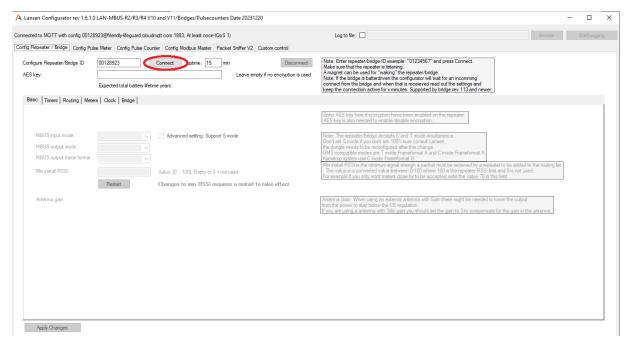

Note. The complete clear of memory takes about 60-120 seconds.
Be patient.

Delete selected

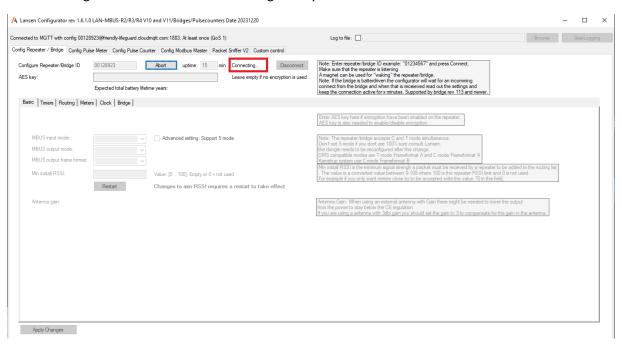
12

15 16

18 19

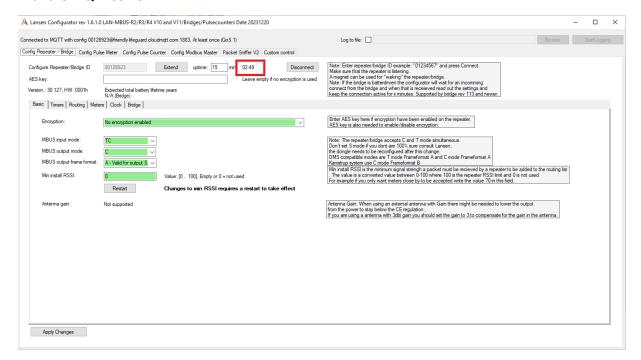

Connecting and working with Lansen Configurator (Battery Gateway)

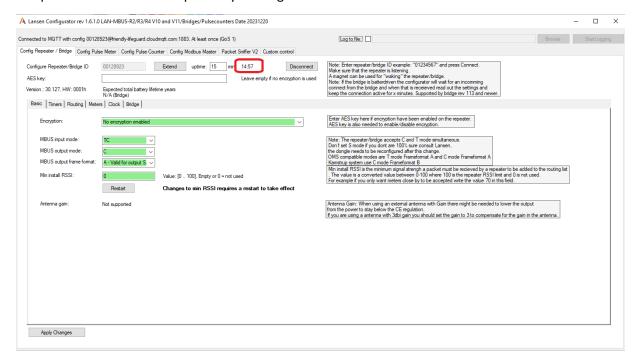
A battery-operated gateway is not always online (sleeping) to save battery. This must be considered when using Lansen Configurator, since trying to connect to a gateway may not happen right away like it would with a mainspowered gateway.

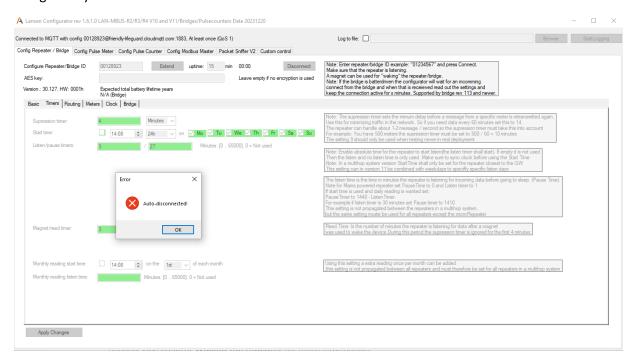

When the button *Connect* is clicked, marked by red circle below, the program Lansen Configurator will try to connect with the specified gateway and continuously checks if the gateway connects to the MQTT server. Once the gateway is connected to the MQTT server, the Configurator will automatically retrieve all settings from the gateway and force the gateway to be online the number of minutes as set in the field *Uptime*.

The following images shows the process in detail.


Enter a value for *Uptime*, e.g., 15 minutes, and click *Connect* to retrieve information from the gateway once the gateway is connected to the MQTT server.

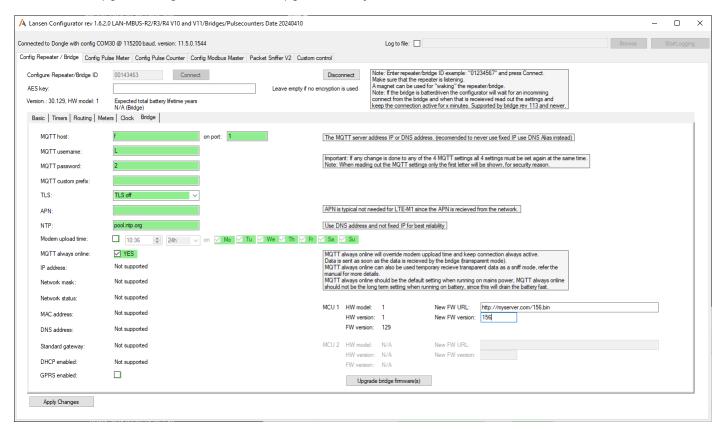

Lansen Configurator tries to connect to the gateway


The gateway was offline so the program waits for a connection from the gateway.


Once the gateway is connected to the MQTT server and connection is established by Lansen Configurator, the countdown of the uptime will start. The counter shows the time left before the gateway shuts down the connection with the MQTT server.

It is possible to extend the uptime by clicking 'Extend'.

The gateway closes the connection when the timer reaches 00:00 or when the button *Disconnect* is clicked.


Upgrade firmware

To upgrade the firmware, a specific command must be sent to the gateway via MQTT or the LAN-WMBUS-D1/D2-TC configuration dongle.

LTE gateway

Below is an example setting.

- In the field called Firmware URL, enter the HTTP-server where the firmware is located.
- In Firmware version, enter the firmware version.
- Click Upgrade bridge firmware The upgrade usually takes less than 1 minute.

Ethernet Gateway

The ethernet gateway contains two firmwares which typically must be upgraded at the same time. In that case both the firmware for MCU 1 and MCU 2 be entered at the same time. Contact us for details.